Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.901
Filtrar
1.
BMC Oral Health ; 24(1): 418, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580938

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. The oncometabolites have been studied in OSCC, but the mechanism of metabolic reprogramming remains unclear. To identify the potential metabolic markers to distinguish malignant oral squamous cell carcinoma (OSCC) tissue from adjacent healthy tissue and study the mechanism of metabolic reprogramming in OSCC. We compared the metabolites between cancerous and paracancerous tissues of OSCC patients by 1HNMR analysis. We established OSCC derived cell lines and analyzed their difference of RNA expression by RNA sequencing. We investigated the metabolism of γ-aminobutyrate in OSCC derived cells by real time PCR and western blotting. Our data revealed that much more γ-aminobutyrate was produced in cancerous tissues of OSCC patients. The investigation based on OSCC derived cells showed that the increase of γ-aminobutyrate was promoted by the synthesis of glutamate beyond the mitochondria. In OSCC cancerous tissue derived cells, the glutamate was catalyzed to glutamine by glutamine synthetase (GLUL), and then the generated glutamine was metabolized to glutamate by glutaminase (GLS). Finally, the glutamate produced by glutamate-glutamine-glutamate cycle was converted to γ-aminobutyrate by glutamate decarboxylase 2 (GAD2). Our study is not only benefit for understanding the pathological mechanisms of OSCC, but also has application prospects for the diagnosis of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Glutamina/genética , Glutamina/metabolismo , Reprogramação Metabólica , Glutamatos/genética , Glutamatos/metabolismo , Linhagem Celular Tumoral
2.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38426877

RESUMO

When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Infecções Estafilocócicas , Humanos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus , Fibrose Cística/complicações , Mutação , Sistemas de Transporte de Aminoácidos/genética , Glutamatos/genética , Glutamatos/metabolismo , Glutamatos/farmacologia , Biofilmes
3.
Chembiochem ; 25(8): e202300865, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38442082

RESUMO

Mono-ADP-ribosylation is a dynamic post-translational modification (PTM) with important roles in cell signalling. This modification occurs on a wide variety of amino acids, and one of the canonical modification sites within proteins is the side chain of glutamic acid. Given the transient nature of this modification (acylal linkage) and the high sensitivity of ADP-ribosylated glutamic acid, stabilized isosteres are required for structural and biochemical studies. Here, we report the synthesis of a mimic of ADP-ribosylated peptide derived from histone H2B that contains carba-ADP-ribosylated glutamine as a potential mimic for Glu-ADPr. We synthesized a cyclopentitol-ribofuranosyl derivative of 5'-phosphoribosylated Fmoc-glutamine and used this in the solid-phase synthesis of the carba-ADPr-peptide mimicking the ADP-ribosylated N-terminal tail of histone H2B. Binding studies with isothermal calorimetry demonstrate that the macrodomains of human MacroD2 and TARG1 bind to carba-ADPr-peptide in the same way as ADPr-peptides containing the native ADP-riboside moiety connected to the side chain of glutamine in the same peptide sequence.


Assuntos
Glutamina , Histonas , Humanos , Glutamina/química , Glutamina/metabolismo , Histonas/metabolismo , Peptídeos/química , ADP-Ribosilação , Glutamatos/metabolismo
4.
Glia ; 72(6): 1054-1066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450799

RESUMO

Neurons in sensory ganglia are wrapped completely by satellite glial cells (SGCs). One putative function of SGCs is to regulate the neuronal microenvironment, but this role has received only little attention. In this study we investigated whether the SGC envelope serves a barrier function and how SGCs may control the neuronal microenvironment. We studied this question on short-term (<24 h) cell cultures of dorsal root ganglia and trigeminal ganglia from adult mice, which contain neurons surrounded with SGCs, and neurons that are not. Using calcium imaging, we measured neuronal responses to molecules with established actions on sensory neurons. We found that neurons surrounded by SGCs had a smaller response to molecules such as adenosine triphosphate (ATP), glutamate, GABA, and bradykinin than neurons without glial cover. When we inhibited the activity of NTPDases, which hydrolyze the ATP, and also when we inhibited the glutamate and GABA transporters on SGCs, this difference in the neuronal response was no longer observed. We conclude that the SGC envelope does not hinder diffusional passage, but acts as a metabolic barrier that regulates the neuronal microenvironment, and can protect the neurons and modulate their activity.


Assuntos
Neuroglia , Neurônios , Animais , Camundongos , Neuroglia/metabolismo , Gânglios Sensitivos , Gânglios Espinais , Glutamatos/metabolismo , Trifosfato de Adenosina/metabolismo , Células Satélites Perineuronais/metabolismo
5.
BMC Plant Biol ; 24(1): 82, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302892

RESUMO

BACKGROUND: Wolfberry is well-known for its high nutritional value and medicinal benefits. Due to the continuous ripening nature of Goji berries and the fact that they can be commercially harvested within a few weeks, their phytochemical composition may change during the harvesting process at different periods. RESULT: The involved molecular mechanisms of difference in fruit quality of ripe Lycium barbarum L. harvested at four different periods were investigated by transcriptomic and metabolomics analyses for the first time. According to the results we obtained, it was found that the appearance quality of L. barbarum fruits picked at the beginning of the harvesting season was superior, while the accumulation of sugar substances in L. barbarum fruits picked at the end of the harvesting season was better. At the same time the vitamin C and carotenoids content of wolfberry fruits picked during the summer harvesting season were richer. Ascorbic acid, succinic acid, glutamic acid, and phenolic acids have significant changes in transcription and metabolism levels. Through the network metabolic map, we found that ascorbic acid, glutamic acid, glutamine and related enzyme genes were differentially accumulated and expressed in wolfberry fruits at different harvesting periods. Nevertheless, these metabolites played important roles in the ascorbate-glutathione recycling system. Ascorbic acid, phenolic substances and the ascorbate-glutathione recycling system have antioxidant effects, which makes the L. barbarum fruits harvested in the summer more in line with market demand and health care concepts. CONCLUSION: This study laid the foundation for understanding the molecular regulatory mechanisms of quality differences of ripe wolfberry fruits harvested at different periods, and provides a theoretical basis for enhancing the quality of L. barbarum fruits.


Assuntos
Lycium , Lycium/genética , Lycium/metabolismo , Frutas/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Glutamatos/metabolismo
6.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383421

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Assuntos
Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sinais (Psicologia) , Inflamação/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Neurotóxicas/metabolismo , Glutamatos/metabolismo , Ferro/metabolismo
7.
Biotechnol J ; 19(2): e2300564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403441

RESUMO

The dipeptide γ-glutamylcysteine (γ-GC), the first intermediate of glutathione (GSH) synthesis, is considered as a promising drug to reduce or prevent plethora of age-related disorders such as Alzheimer and Parkinson diseases. The unusual γ-linkage between the two constitutive amino acids, namely cysteine and glutamate, renders its chemical synthesis particularly challenging. Herein, we report on the metabolic engineering of the non-conventional yeast Yarrowia lipolytica for efficient γ-GC synthesis. The yeast was first converted into a γ-GC producer by disruption of gene GSH2 encoding GSH synthase and by constitutive expression of GSH1 encoding glutamylcysteine ligase. Subsequently genes involved in cysteine and glutamate anabolism, namely MET4, CYSE, CYSF, and GDH1 were overexpressed with the aim to increase their intracellular availability. With such a strategy, a γ-GC titer of 464 nmol mg-1 protein (93 mg gDCW-1 ) was obtained within 24 h of cell growth.


Assuntos
Antioxidantes , Yarrowia , Antioxidantes/metabolismo , Cisteína/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Glutationa , Glutamatos/metabolismo
8.
J Korean Med Sci ; 39(7): e79, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412613

RESUMO

BACKGROUND: This study evaluated the difference in brain metabolite profiles between normothermia and hypothermia reaching 25°C in humans in vivo. METHODS: Thirteen patients who underwent thoracic aorta surgery under moderate hypothermia were prospectively enrolled. Plasma samples were collected simultaneously from the arteries and veins to estimate metabolite uptake or release. Targeted metabolomics based on liquid chromatographic mass spectrometry and direct flow injection were performed, and changes in the profiles of respective metabolites from normothermia to hypothermia were compared. The ratios of metabolite concentrations in venous blood samples to those in arterial blood samples (V/A ratios) were calculated, and log2 transformation of the ratios [log2(V/A)] was performed for comparison between the temperature groups. RESULTS: Targeted metabolomics were performed for 140 metabolites, including 20 amino acids, 13 biogenic amines, 10 acylcarnitines, 82 glycerophospholipids, 14 sphingomyelins, and 1 hexose. Of the 140 metabolites analyzed, 137 metabolites were released from the brain in normothermia, and the release of 132 of these 137 metabolites was decreased in hypothermia. Two metabolites (dopamine and hexose) showed constant release from the brain in hypothermia, and 3 metabolites (2 glycophospholipids and 1 sphingomyelin) showed conversion from release to uptake in hypothermia. Glutamic acid demonstrated a distinct brain metabolism in that it was taken up by the brain in normothermia, and the uptake was increased in hypothermia. CONCLUSION: Targeted metabolomics demonstrated various degrees of changes in the release of metabolites by the hypothermic brain. The release of most metabolites was decreased in hypothermia, whereas glutamic acid showed a distinct brain metabolism.


Assuntos
Hipotermia Induzida , Hipotermia , Humanos , Hipotermia/metabolismo , Encéfalo/metabolismo , Aminoácidos , Hipotermia Induzida/métodos , Hexoses/metabolismo , Glutamatos/metabolismo
9.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338656

RESUMO

Amyloid beta 1-42 (Aß42) aggregates acutely impair hippocampal long-term potentiation (LTP) of synaptic transmission, and 17ß-estradiol is crucial for hippocampal LTP. We tested whether boosting the synthesis of neural-derived 17ß-estradiol (nE2) saves hippocampal LTP by the neurotoxic action of Aß42. Electrophysiological recordings were performed to measure dentate gyrus (DG) LTP in rat hippocampal slices. Using a pharmacological approach, we tested the ability of nE2 to counteract the LTP impairment caused by acute exposure to soluble Aß42 aggregates. nE2 was found to be required for LTP in DG under physiological conditions. Blockade of steroid 5α-reductase with finasteride, by increasing nE2 synthesis from testosterone (T), completely recovered LTP in slices treated with soluble Aß42 aggregates. Modulation of the glutamate N-methyl-D aspartate receptor (NMDAR) by memantine effectively rescued the LTP deficit observed in slices exposed to Aß42, and memantine prevented LTP reduction observed under the blocking of nE2 synthesis. nE2 is able to counteract Aß42-induced synaptic dysfunction. This effect depends on a rapid, non-genomic mechanism of action of nE2, which may share a common pathway with glutamate NMDAR signaling.


Assuntos
Estradiol , Potenciação de Longa Duração , Ratos , Animais , Estradiol/farmacologia , Estradiol/metabolismo , Peptídeos beta-Amiloides/metabolismo , Memantina/farmacologia , Hipocampo/metabolismo , Glutamatos/metabolismo
10.
Kaohsiung J Med Sci ; 40(4): 348-359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243370

RESUMO

The effects of evodiamine (EVO) on oral squamous cell carcinoma (OSCC) are not yet understood. Based on our earlier findings, we hypothesized that evodiamine may affect OSCC cell proliferation and glutamate metabolism by modulating the expression of EPRS (glutamyl-prolyl-tRNA synthetase 1). From GEPIA, we obtained EPRS expression data in patients with OSCC as well as survival prognosis data. An animal model using Cal27 cells in BALB/c nude mice was established. The expression of EPRS was assessed by immunofluorescence, Western blotting, and quantitative PCR. Glutamate measurements were performed to evaluate the impact of evodiamine on glutamate metabolism of Cal27 and SAS tumor cells. transient transfection techniques were used to knock down and modulate EPRS in these cells. EPRS is expressed at higher levels in OSCC than in normal tissues, and it predicts poor prognosis in patients. In a nude mouse xenograft model, evodiamine inhibited tumor growth and the expression of EPRS. Evodiamine impacted cell proliferation, glutamine metabolism, and EPRS expression on Cal27 and SAS cell lines. In EPRS knockdown cell lines, both cell proliferation and glutamine metabolism are suppressed. EPRS's overexpression partially restores evodiamine's inhibitory effects on cell proliferation and glutamine metabolism. This study provides crucial experimental evidence supporting the potential therapeutic application of evodiamine in treating OSCC. Evodiamine exhibits promising anti-tumor effects by targeting EPRS to regulate glutamate metabolism.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Quinazolinas , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Glutamatos/metabolismo , Glutamina , Camundongos Nus , Neoplasias Bucais/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
11.
Stem Cell Reports ; 19(2): 187-195, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38242131

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder characterized by progressive muscular weakness due to the selective loss of motor neurons. Mutations in the gene Fused in Sarcoma (FUS) were identified as one cause of ALS. Here, we report that mutations in FUS lead to upregulation of synaptic proteins, increasing synaptic activity and abnormal release of vesicles at the synaptic cleft. Consequently, FUS-ALS neurons showed greater vulnerability to glutamate excitotoxicity, which raised neuronal swellings (varicose neurites) and led to neuronal death. Fragile X mental retardation protein (FMRP) is an RNA-binding protein known to regulate synaptic protein translation, and its expression is reduced in the FUS-ALS lines. Collectively, our data suggest that a reduction of FMRP levels alters the synaptic protein dynamics, leading to synaptic dysfunction and glutamate excitotoxicity. Here, we present a mechanistic hypothesis linking dysregulation of peripheral translation with synaptic vulnerability in the pathogenesis of FUS-ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Adulto , Humanos , Esclerose Lateral Amiotrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Mutação , Glutamatos/metabolismo , Proteína FUS de Ligação a RNA/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-38296154

RESUMO

Current treatment for schizophrenia (SZ) ameliorates the positive symptoms, but is inefficient in treating the negative and cognitive symptoms. The SZ glutamatergic dysfunction hypothesis has opened new avenues in the development of novel drugs targeting the glutamate storm, an inducer of progressive neuropathological changes. Positive allosteric modulators of metabotropic glutamate receptor 2 (mGluR2), such as JNJ-46356479 (JNJ), reduce the presynaptic release of glutamate, which has previously been demonstrated to attenuate glutamate- and dopamine-induced apoptosis in human neuroblastoma cell cultures. We hypothesised that JNJ treatment would modify the brain levels of apoptotic proteins in a mouse model of ketamine (KET)-induced schizophrenia. We analysed the levels of proapoptotic (caspase-3 and Bax) and antiapoptotic (Bcl-2) proteins by western blot in the prefrontal cortex and hippocampus of JNJ-treated mice. JNJ attenuated apoptosis in the brain by partially restoring the levels of the antiapoptotic Bcl-2 protein, which is significantly reduced in animals exposed to KET. Additionally, a significant inverse correlation was observed between proapoptotic protein levels and behavioural deficits in the mice. Our findings suggest that JNJ may attenuate brain apoptosis in vivo, as previously described in cell cultures, providing a link between neuropathological deficits and SZ symptomatology.


Assuntos
Ketamina , Receptores de Glutamato Metabotrópico , Esquizofrenia , Humanos , Camundongos , Animais , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Ketamina/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Glutamatos/metabolismo
13.
Environ Pollut ; 341: 122934, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967709

RESUMO

Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Cromo/metabolismo , Níquel/toxicidade , Níquel/metabolismo , Oryza/genética , Oryza/metabolismo , Regulação para Cima , Regulação para Baixo , Chumbo/metabolismo , Glutamatos/genética , Glutamatos/metabolismo , Celulose/metabolismo , Poluentes do Solo/análise , Solo , Metais Pesados/análise
14.
Anesth Analg ; 138(5): 1094-1106, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37319016

RESUMO

BACKGROUND: The ketamine metabolite (2R,6R)-hydroxynorketamine ([2R,6R]-HNK) has analgesic efficacy in murine models of acute, neuropathic, and chronic pain. The purpose of this study was to evaluate the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) dependence of (2R,6R)-HNK analgesia and protein changes in the hippocampus in murine pain models administered (2R,6R)-HNK or saline. METHODS: All mice were CD-1 IGS outbred mice. Male and female mice underwent plantar incision (PI) (n = 60), spared nerve injury (SNI) (n = 64), or tibial fracture (TF) (n = 40) surgery on the left hind limb. Mechanical allodynia was assessed using calibrated von Frey filaments. Mice were randomized to receive saline, naloxone, or the brain-penetrating AMPA blocker (1,2,3,4-Tetrahydro-6-nitro-2,3-dioxobenzo [f]quinoxaline-7-sulfonamide [NBQX]) before (2R,6R)-HNK 10 mg/kg, and this was repeated for 3 consecutive days. The area under the paw withdrawal threshold by time curve for days 0 to 3 (AUC 0-3d ) was calculated using trapezoidal integration. The AUC 0-3d was converted to percent antiallodynic effect using the baseline and pretreatment values as 0% and 100%. In separate experiments, a single dose of (2R,6R)-HNK 10 mg/kg or saline was administered to naive mice (n = 20) and 2 doses to PI (n = 40), SNI injury (n = 40), or TF (n = 40) mice. Naive mice were tested for ambulation, rearing, and motor strength. Immunoblot studies of the right hippocampal tissue were performed to evaluate the ratios of glutamate ionotropic receptor (AMPA) type subunit 1 (GluA1), glutamate ionotropic receptor (AMPA) type subunit 2 (GluA2), phosphorylated voltage-gated potassium channel 2.1 (p-Kv2.1), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-AKT), phosphorylated extracellular signal-regulated kinase (p-ERK), CXC chemokine receptor 4 (CXCR4), phosphorylated eukaryotic translation initiation factor 2 subunit 1 (p-EIF2SI), and phosphorylated eukaryotic translation initiation factor 4E (p-EIF4E) to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RESULTS: No model-specific gender difference in antiallodynic responses before (2R,6R)-HNK administration was observed. The antiallodynic AUC 0-3d of (2R,6R)-HNK was decreased by NBQX but not with pretreatment with naloxone or saline. The adjusted mean (95% confidence interval [CI]) antiallodynic effect of (2R,6R)-HNK in the PI, SNI, and TF models was 40.7% (34.1%-47.3%), 55.1% (48.7%-61.5%), and 54.7% (46.5%-63.0%), greater in the SNI, difference 14.3% (95% CI, 3.1-25.6; P = .007) and TF, difference 13.9% (95% CI, 1.9-26.0; P = .019) compared to the PI model. No effect of (2R,6R)-HNK on ambulation, rearing, or motor coordination was observed. Administration of (2R,6R)-HNK was associated with increased GluA1, GluA2, p-Kv2.1, and p-CaMKII and decreased BDNF ratios in the hippocampus, with model-specific variations in proteins involved in other pain pathways. CONCLUSIONS: (2R,6R)-HNK analgesia is AMPA-dependent, and (2R,6R)-HNK affected glutamate, potassium, calcium, and BDNF pathways in the hippocampus. At 10 mg/kg, (2R,6R)-HNK demonstrated a greater antiallodynic effect in models of chronic compared with acute pain. Protein analysis in the hippocampus suggests that AMPA-dependent alterations in BDNF-TrkB and Kv2.1 pathways may be involved in the antiallodynic effect of (2R,6R)-HNK.


Assuntos
Ketamina , Animais , Feminino , Masculino , Camundongos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Antidepressivos , Fator Neurotrófico Derivado do Encéfalo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologia , Hipocampo , Ketamina/farmacologia , Ketamina/análogos & derivados , Naloxona , Dor/metabolismo
15.
J Exp Bot ; 75(3): 917-934, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37843921

RESUMO

Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.


Assuntos
Arabidopsis , Pirróis , Arabidopsis/metabolismo , Prolina Oxidase/química , Prolina Oxidase/metabolismo , Mitocôndrias/metabolismo , Glutamatos/metabolismo , Ornitina/metabolismo , Prolina/metabolismo
16.
Med Mol Morphol ; 57(1): 59-67, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37930423

RESUMO

Cancer cell proliferation is affected by post-translational modifications of tubulin. Especially, overexpression or depletion of enzymes for modifications on the tubulin C-terminal region perturbs dynamic instability of the spindle body. Those modifications include processing of C-terminal amino acids of α-tubulin; detyrosination, and a removal of penultimate glutamic acid (Δ2). We previously found a further removal of the third last glutamic acid, which generates so-called Δ3-tubulin. The effects of Δ3-tubulin on spindle integrities and cell proliferation remain to be elucidated. In this study, we investigated the impacts of forced expression of Δ3-tubulin on the structure of spindle bodies and cell division in a pancreatic cancer cell line, PANC-1. Overexpression of HA-tagged Δ3-tubulin impaired the morphology and orientation of spindle bodies during cell division in PANC-1 cells. In particular, spindle bending was most significantly increased. Expression of EGFP-tagged Δ3-tubulin driven by the endogenous promoter of human TUBA1B also deformed and misoriented spindle bodies. Spindle bending and condensation defects were significantly observed by EGFP-Δ3-tubulin expression. Furthermore, EGFP-Δ3-tubulin expression increased the nuclear size in a dose-dependent manner of EGFP-Δ3-tubulin expression. The expression of EGFP-Δ3-tubulin tended to slow down cell proliferation. Taken together, our results demonstrate that Δ3-tubulin affects the spindle integrity and cell division.


Assuntos
Neoplasias Pancreáticas , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/genética , Fuso Acromático/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologia
17.
Plant Physiol ; 194(2): 1091-1103, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37925642

RESUMO

Ricca assays allow the direct introduction of compounds extracted from plants or the organisms that attack them into the leaf vasculature. Using chromatographic fractionation of Arabidopsis (Arabidopsis thaliana) leaf extracts, we found glutamate was the most active low mass elicitor of membrane depolarization. However, other known elicitors of membrane depolarization are generated in the wound response. These include unstable aglycones generated by glucosinolate (GSL) breakdown. None of the aglycone-derived GSL-breakdown products, including nitriles and isothiocyanates, that we tested using Ricca assays triggered electrical activity. Instead, we found that glutathione and the GSL-derived compound sulforaphane glutathione triggered membrane depolarizations. These findings identify a potential link between GSL breakdown and glutathione in the generation of membrane depolarizing signals. Noting that the chromatographic fractionation of plant extracts can dilute or exchange ions, we found that Cl- caused glutamate receptor-like3.3-dependent membrane depolarizations. In summary, we show that, in addition to glutamate, glutathione derivatives as well as chloride ions will need to be considered as potential elicitors of wound-response membrane potential change. Finally, by introducing aphid (Brevicoryne brassicae) extracts or the flagellin-derived peptide flg22 into the leaf vasculature we extend the use of Ricca assays for the exploration of insect/plant and bacteria/plant interactions.


Assuntos
Arabidopsis , Cloretos , Cloretos/metabolismo , Arabidopsis/metabolismo , Glutationa/farmacologia , Glutationa/metabolismo , Xilema , Glutamatos/metabolismo
18.
Biotechnol Prog ; 40(1): e3411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37985220

RESUMO

To study the relationship between the yield of 1,3-propanediol (1,3-PDO) and the flux change of the Clostridium butyricum metabolic pathway, an optimized calculation method based on dynamic flux balance analysis was used by combining genome-scale flux balance analysis with a kinetic model. A more comprehensive and extensive metabolic pathway was obtained by optimization calculations. The primary extended branches include: the dihydroxyacetone node, which enters the pentose phosphate pathway; the α-oxoglutarate node, which has synthetic metabolic pathways for glutamic acid and amino acids; and the serine and homocysteine nodes, which produce cystathionine before homocysteine enters the methionine cycle pathway. According to the expanded metabolic network, the flux distribution of key nodes in the metabolic pathway and the relationship between the flux distribution ratio of nodes and the yield of 1,3-PDO were analyzed. At the dihydroxyacetone node, the flux of dihydroxyacetone converted to dihydroxyacetone phosphate was positively correlated with the yield of 1,3-PDO. As an important intermediate product, the flux change in the metabolic pathway of α-oxoglutarate reacting with amino acids to produce glutamic acid is positively correlated with the yield. When pyruvate was used as the central node to convert into lactic acid and α-oxoglutarate, the proportion of branch flux was negatively correlated with the yield of 1,3-PDO. These studies provide a theoretical basis for the optimization and further study of the metabolic pathway of C. butyricum.


Assuntos
Clostridium butyricum , Clostridium butyricum/metabolismo , Fermentação , Di-Hidroxiacetona , Ácidos Cetoglutáricos/metabolismo , Glicerol/metabolismo , Propilenoglicóis , Propilenoglicol/metabolismo , Homocisteína/metabolismo , Glutamatos/metabolismo
19.
Metabolism ; 150: 155719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935302

RESUMO

INTRODUCTION: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. METHODS: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. RESULTS: The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. CONCLUSIONS: The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.


Assuntos
Aminoácidos , Epigênese Genética , Proteínas F-Box , Histona Desmetilases com o Domínio Jumonji , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Cromatina , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Fibroblastos/metabolismo , Glutamatos/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
20.
Behav Brain Funct ; 19(1): 23, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110991

RESUMO

As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.


Assuntos
Astrócitos , Conexina 43 , Humanos , Astrócitos/metabolismo , Conexina 43/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA